Table of Contents
前言
昨天介紹了Algorithm X的概念和流程,但跟數獨又有什麼關係呢?這個問題我大概花了兩~三天才弄懂,因此今天就要來介紹這一層關係,並且會提供給大家範例程式碼,那就讓我們看下去吧~
Algorithm X v.s 數獨
昨天提到Algorithm X在使用的時候,會先將資料轉換成Matrix,但是數獨到底跟Matrix有什麼關係勒?
我們以4x4的數獨為例(因為9x9的資料太多了),因為數獨基本上會有4個限制
:
- 一個欄位一個值
- 同一個區塊中,所填入的數字不可重複。
- 同一行中填入的數字不可重複。
- 同一列中填入的數字不可重複。
因此我們在製作Matrix的時候,欄(Column)的數量會是4x4x4,前兩個4的是數獨的大小,最後一個4就是這四個限制,因此欄的數量會是64個;而列的數量也是4x4x4,前兩個一樣是數獨的大小,最後一個4是『數字的數量(1~4)』,因此列的數量也是64,所以我們準備的Matrix就會是一個64x64的大矩陣。
如果是9x9的數獨,就會是324x729的更大矩陣。
在這個Matrix中,欄基本上是代表每一個欄位(如上圖),因為每16欄是一個限制,64欄總共分成4組,剛好對應4個限制,因此每一組中都會有1~16的編號,而全部的欄位的編號是用index 0~63;此外,列表示的是(值, 列, 欄)(cand, r, c)
,也就是哪一個座標位置(欄位)的值是什麼,再來,會將每4個列設定為一組,每一組對應的是同一個欄位但不同值,以前面四個列為例,都是說在0,0這個位置中,填入的數字分別是1~4。
按照上表來看,第一組欄(index 0 ~ index 15)的限制是每一個欄位只能有一個值,因此你們會發現,在下面欄位中填1的時候,同一個欄位且同一欄都會填入1,因為同一欄表示的是同一個欄位(用上面的編號來看);而第二組欄的限制是每一列填入的數字不可重複,因此對應到(cand, r, c)去看的話,就會看到同一欄中有填入1的欄位相互抵觸(有我就沒有他);第三組欄的限制和第四組欄的限制也是透過同樣的方式去填入數字1。上表看起來可能不清楚,因此檔案可以在這邊下載,讓大家可以把檔案載回去看,可能需要一點時間研究,這個檔案中也包含了如果是套用到一個已知解答的4x4數獨上時,表格會變成什麼樣子,其中最下面可以看到每一個欄的1的合計都是1
(也只能是這樣才是答案)。
那問題又來了:如何去判斷哪個欄位要填數字1? 上面的這個表格就是整理出來的公式,在程式實作的時候,就可以利用這些公式在對應的位置中填入數字1。
只要產生出了這個複雜的Matrix,我們就可以用Algorithm X的概念來計算數獨的答案。
Algorithm X 解決 Sudoku 範例程式
程式的概念基本上是我們要先產生Matrix,因此可以透過MatrixUtils.generateMatrix(size, sqrt, symbols, numOfConstraints)
這個方法來產生matrix,裡面就已經套入了上面提到的四個公式來在欄位中放入數字1(如果要看產生出來的結果,可以呼叫MatrixUtils.printMatrix()
來看看結果是不是如預期,程式如下:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* @author Hank Lee
* Shared in InformisTry -- https://jumperc2p.github.io/InformisTry/
*/
public class MatrixUtils {
public static Map<String, List<String>> combinations = new HashMap<>();
/**
* The generation methods to prepare matrix
* @param size the size of sudoku. For example, a 4x4 sudoku grid will give "4".
* @param sqrt the sqrt of the size of sudoku. For example, a 4x4 sudoku grid will give "2".
* @param symbols the symbols used in grid
* @param numberOfConstraints the number of constraints
* @param cages the cages for killer sudoku
* @return matrixes
*/
public static List<Matrix> generateMatrix(Integer size, Integer sqrt, Integer[] symbols, int numberOfConstraints) {
// Prepare to matrix
List<Matrix> matrixs = null;
matrixs = new ArrayList<>();
for (int row = 0; row < size; row++) {
for (int col = 0; col < size; col++) {
for (int value : symbols) {
Integer[] constraints = new Integer[size*size*numberOfConstraints];
// One value constraint:
// constraint number : row x size + col
constraints[row * size + col] = 1;
// Row constraint:
// constraint number : size^2 + row x size + value - 1
constraints[((int) Math.pow(size,2)) + row * size + value - 1] = 1;
// Column constraint:
// constraint number : 2 x size^2 + col x size + value - 1
constraints[2 * ((int) Math.pow(size,2)) + col * size + value - 1] = 1;
// Box constraint:
// constraint number : 3 x size^2 + (row / sqrt) x size x sqrt + (col / sqrt) x size + value - 1
constraints[3 * ((int) Math.pow(size,2)) + (row / sqrt) * size * sqrt + (col / sqrt) * size + value - 1] = 1;
matrixs.add(new Matrix(row, col, value, constraints));
}
}
}
// To print the matrix
// printMatrix(matrixs, size);
return matrixs;
}
/**
* To print the matrix in the console
*
* @param matrixes the matrix
* @param size the size of sudoku. For example, a 4x4 sudoku grid will give "4".
*/
public static void printMatrix(List<Matrix> matrixes, int size) {
//1,1,1 | c c c c c c c c c c c c c c c c | c c c c c c c c c c c c c c c c | c c c c c c c c c c c c | c c c c c c c c c c c c c c c c
System.out.println("r,c,v | c c c c c c c c c c c c c c c c | c c c c c c c c c c c c c c c c | c c c c c c c c c c c c c c c c | c c c c c c c c c c c c c c c c | c c c c c c c c c c c c c c c c");
System.out.println("-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------");
for (Matrix m : matrixes) {
System.out.print(m.row+","+m.col+","+m.value+" | ");
for (int i = 0; i < m.constraints.length; i++) {
if (i != 0 && i % (size*size) == 0)
System.out.print("| ");
Integer val = m.constraints[i];
System.out.print((val == null ? " ":m.constraints[i])+" ");
}
System.out.println();
if (m.value % size == 0)
System.out.println("-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------");
}
}
}
有了Matrix之後,在Solver裡面,因為數獨會有一些預設值,所以有了這些預設值的話,就透過removeRowsByGrid(sudokuGrid)
去改變Matrix的內容(利用預設值將Matrix的內容刪減),然後才正式進行solve的動作,程式如下:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Algorithm X solver for standard Sudoku.
* @author Hank Lee
* Shared in InformisTry -- https://jumperc2p.github.io/InformisTry/
*/
public class AlgorXSolver {
// prepare the object to store matrix, partial solutions and the columns deleted
List<Matrix> matrixes = null;
List<Matrix> solutions = new ArrayList<>();
List<Integer> deletedColumns = new ArrayList<>();
Integer size = null;
public AlgorXSolver() {
} // end of AlgorXSolver()
/**
* The public solve method for other programs to call
*/
public boolean solve(SudokuGrid sudokuGrid) {
int numConstraints = 4;
// if the matrix is empty, it need to be generated by the size of sudoku grid
// and symbols and the number of constraints.
if (matrixes == null)
matrixes = MatrixUtils.generateMatrix(sudokuGrid.size, sudokuGrid.sqrt, sudokuGrid.symbols, numConstraints);
// As some cells have been inserted value,
// we need to get rid of those rows and columns related to them in the matrix
removeRowsByGrid(sudokuGrid);
// the total number of constraints need to be satisfied in the matrix
size = sudokuGrid.size * sudokuGrid.size * numConstraints;
// call the private solve method to find the solution of the standard sudoku
if (solve(matrixes, deletedColumns)) {
// After finding the solutions,
// add the value to each cell of the standard sudoku grind.
for (Matrix matrix : solutions) {
sudokuGrid.grid[matrix.row][matrix.col] = matrix.value;
}
return true;
}
return false;
} // end of solve()
/**
* The exact method to solve standard sudoku problem
*
* @param matrixes the matrixes to analyse
* @param deletedColumns those deleted columns of constraints in matrix
* @return the problem is solved or not.
*/
@SuppressWarnings("unchecked")
private Boolean solve(List<Matrix> matrixes, List<Integer> deletedColumns) {
// If Matrix is empty, the problem is solved; terminate successfully.
if (matrixes.size() == 0) {
return true;
}
// Find the minimize sum of column constraints in the current matrix
// and get the matrixes of potential solution
Map<String, Object> minMap = findMinSumByColumn(matrixes, deletedColumns);
List<Matrix> potentialSols = (List<Matrix>) minMap.get("potentialSols");
// If the index is null, it means that it cannot find a solution based on the
// current situation.
if (minMap.get("idx") == null) {
return false;
}
// If the min value is 0, then the size of potential solution will be 0,
// which means the process is terminated unsuccessfully.
if (potentialSols.size() == 0) {
return false;
}
// To store the current matrix and deleted columns for backtracking recovery
List<Matrix> tempmatrixes = new ArrayList<>();
tempmatrixes.addAll(matrixes);
List<Integer> tempDeletedColumns = new ArrayList<>();
tempDeletedColumns.addAll(deletedColumns);
for (Matrix matrix : potentialSols) {
// add the partial solutions
solutions.add(matrix);
// find which columns should be deleted
for (int i = 0; i < matrix.constraints.length; i++) {
if (matrix.constraints[i] != null && matrix.constraints[i] == 1) {
deletedColumns.add(i);
}
}
// remove matrix based on the deleted columns
for (Integer i : deletedColumns) {
// delete row by idx
matrixes.removeIf(x -> x.constraints[i] != null);
}
// Use the modified matrix to find partial solutions recursively.
if (solve(matrixes, deletedColumns)) {
return true;
// if it returns false, it means that the partial solution is wrong,
// and the process need to be recovered to the previous state, which is
// backtracking.
} else {
solutions.remove(matrix);
matrixes.removeAll(matrixes);
matrixes.addAll(tempmatrixes);
deletedColumns.removeAll(deletedColumns);
deletedColumns.addAll(tempDeletedColumns);
}
}
return false;
}
/**
* The method is used to find the minimize sum of columns in the current matrix
* and based on the column, prepare to matrixes which are potential solutions.
*
* @param matrixes the current matrix
* @param deletedColumns the column deleted
* @return
*/
private Map<String, Object> findMinSumByColumn(List<Matrix> matrixes, List<Integer> deletedColumns) {
Integer[] sum = new Integer[size];
Integer min = null;
Integer idx = null;
for (Matrix m : matrixes) {
for (int i = 0; i < size; i++) {
if (m.constraints[i] != null) {
if (sum[i] == null)
sum[i] = 0;
sum[i] = sum[i] + m.constraints[i];
}
}
}
for (int i = 0; i < size; i++) {
// if the index of column can be found in the list of deleted columns
// it means that the column should be skipped.
if (deletedColumns.contains(i)) {
continue;
}
if (sum[i] == null) {
idx = i;
break;
}
if (min == null || min > sum[i]) {
min = sum[i];
idx = i;
}
}
List<Matrix> potentialSols = new ArrayList<>();
if (min != null) {
for (Matrix m : matrixes) {
if (m.constraints[idx] != null) {
potentialSols.add(m);
}
}
}
Map<String, Object> minMap = new HashMap<>();
minMap.put("potentialSols", potentialSols);
minMap.put("idx", idx);
assert (idx == null);
return minMap;
}
/**
* Remove the rows and columns if the cell contains a value
*
* @param sudokuGrid the sudoku grid
*/
private void removeRowsByGrid(SudokuGrid sudokuGrid) {
for (int i = 0; i < sudokuGrid.size; i++) {
for (int j = 0; j < sudokuGrid.size; j++) {
if (sudokuGrid.grid[i][j] != null) {
// delete row by idx
for (Matrix m : matrixes) {
if (m.row == i && m.col == j && m.value == sudokuGrid.grid[i][j]) {
matrixes.remove(m);
for (int k = 0; k < m.constraints.length; k++) {
if (m.constraints[k] != null && m.constraints[k] == 1) {
deletedColumns.add(k);
}
}
for (Integer n : deletedColumns) {
// delete row by idx
matrixes.removeIf(x -> x.constraints[n] != null);
}
break;
}
}
}
}
}
}
}
當中的SudokuGrid則是紀錄數獨的物件,內容為:
/**
* @author Hank Lee
* Shared in InformisTry -- https://jumperc2p.github.io/InformisTry/
*
*/
public class SudokuGrid {
public Integer size = 0;
public Integer[] symbols = null;
public Integer[][] grid = null;
public Integer sqrt = 0;
public boolean validate() {
for (int currentY = 0; currentY < size; currentY++) {
for (int currentX = 0; currentX < size; currentX++) {
int currentNumber = grid[currentY][currentX];
if (!this.basicValidate(this, currentNumber, currentX, currentY))
return false;
}
}
return true;
}
/**
* To do the basic validation of sudoku grid.
* In the method, it only checks basic 3 constraints,
* which are box-value constraints, row-value constraints and column-value constraints
*
* @param sudokuGrid the sudoku grid
* @param currentNumber the current number to check
* @param currentX the current column of the cell
* @param currentY the current row of the cell
* @return true: valid, false: invalid
*/
public boolean basicValidate(SudokuGrid sudokuGrid, int currentNumber, int currentX, int currentY) {
// compare each number in one row
for (int x = 0; x < sudokuGrid.size; x++) {
if (currentX != x && sudokuGrid.grid[currentY][x] != null && currentNumber == sudokuGrid.grid[currentY][x])
return false;
}
// compare each number in one column
for (int y = 0; y < sudokuGrid.size; y++) {
if (currentY != y && sudokuGrid.grid[y][currentX] != null && currentNumber == sudokuGrid.grid[y][currentX])
return false;
}
// compare each number in one sub-grid
int modX = currentX / sudokuGrid.sqrt;
int modY = currentY / sudokuGrid.sqrt;
for (int y = (modY*sudokuGrid.sqrt); y<((modY+1)*sudokuGrid.sqrt); y++) {
for (int x = (modX*sudokuGrid.sqrt); x<((modX+1)*sudokuGrid.sqrt); x++) {
if (currentX != x && currentY != y && sudokuGrid.grid[y][x] != null && sudokuGrid.grid[y][x] == currentNumber)
return false;
}
}
return true;
}
}
這個範例程式我感覺還可以進行優化,目前執行起來的時間會比Backtracking還要長,但優化這件事情,就有緣再說囉!
小結
用Algorithm X解決數獨的問題,麻煩的地方是要產生對應的Matrix,產生這個Matrix之後,一切就簡單了許多,上面的範例我是用Wikipedia上面的範例去進行的,針對這個範例寫出code之後,再直接套入這個數獨的Matrix,一樣可以產生結果。
後記
三個字:『終於啊~~~~~』
30天實在是有點硬,不對,應該說,沒先把文章寫好就參加實在有點硬,但這次參加活動主要也是想為自己留下一個里程碑吧,演算法這些東西在學了之後說真的其實也忘了差不多,藉由這次的整理也算是讓自己可以複習這些內容,我已經盡量讓我自己可以每天都有文章可以產出,畢竟我現在是最後一個學期,手上一次在進行兩個專案,時間上實在是有點太緊繃,但也很高興自己完成了這件事。
原本希望能自己將內容寫的更有趣更清楚一點,但這我有點愧疚,我感覺自己寫出來的東西未如預期的簡單明瞭,也不知道大家能不能弄懂這些內容,希望還勉強可以接受。
謝謝30天都來看我的文章的人,也謝謝那些看過任何一篇文章的人,希望這些內容多多少少可以幫助到一些在學習的人。
下台一鞠躬。
References
- Knuth’s Algorithm X
- Knuth, Donald E. (2000), “Dancing links”, in Davies, Jim; Roscoe, Bill; Woodcock, Jim (eds.), Millennial Perspectives in Computer Science: Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare, Palgrave, pp. 187–214